论文标题
自dual hadamard弯曲序列
Self-dual Hadamard bent sequences
论文作者
论文摘要
最近引入了与Hadamard矩阵有关的弯曲序列的新概念,这是出于安全应用程序的动机(Solé等,2021)。我们最多只需$ 196学习自我双重班级。$我们使用三种竞争的发电方法:疲惫,线性代数和格罗布纳基地。常规的Hadamard矩阵和灌木型Hadamard矩阵提供了许多例子。我们猜想,如果$ v $是一个完美的正方形,那么总是存在一个自偶型弯曲序列$ v $。我们介绍了Hadamard矩阵的强大自动形态群体,该矩阵的作用于其相关的自动弯曲序列。我们给出有效的算法来计算该组。
A new notion of bent sequence related to Hadamard matrices was introduced recently, motivated by a security application ( Solé et al, 2021). We study the self dual class in length at most $196.$ We use three competing methods of generation: Exhaustion, Linear Algebra and Groebner bases. Regular Hadamard matrices and Bush-type Hadamard matrices provide many examples. We conjecture that if $v$ is an even perfect square, a self-dual bent sequence of length $v$ always exist. We introduce the strong automorphism group of Hadamard matrices, which acts on their associated self-dual bent sequences. We give an efficient algorithm to compute that group.