论文标题

部分可观测时空混沌系统的无模型预测

Large Rashba Spin-Orbit Coupling and High-Temperature Quantum Anomalous Hall Effect in Re-Intercalated Graphene/CrI$_3$ Heterostructure

论文作者

Han, Yulei, Yan, Zhi, Li, Zeyu, Xu, Xiaohong, Zhang, Zhenyu, Niu, Qian, Qiao, Zhenhua

论文摘要

2010年,在Rashba旋转轨道耦合和铁磁交换场的存在下提出了石墨烯中量子异常的大厅效应(QAHE)。经过十年的实验探索,异常的大厅电导只能在$ 2E^2/h $的单位中达到约0.25,这归因于微小的Rashba Spin-Orbit耦合。在这里,我们从理论上表明,石墨烯/cri $ _3 $异质结构不仅可以引起相当大的rashba旋转轨道耦合($> $ 40〜MEV),还可以在Valleys $ k $(22.2 mev)和$ k'$(30.3 Mev)和全球频段(5.5 MEV)上打开较大的乐队差距(22.2 mev) Qahe。构建了低能连续模型,以解释潜在的物理机制。我们发现Rashba自旋轨道耦合对外部应力是可靠的,而拉伸应变会增加全球体积间隙。此外,我们还表明,与六角硼氮化物的重新插入石墨烯也可以实现40〜MEV的散装间隙的Qahe,这表明基于$ 5D $的基于石墨烯的异质结构的可调性。我们的发现迈向了基于石墨烯的Qahe实现实验性实现的巨大飞跃,并且肯定会加速基于石墨烯的低功率电子产品的实际应用。

In 2010, quantum anomalous Hall effect (QAHE) in graphene was proposed in the presence of Rashba spin-orbit coupling and ferromagnetic exchange field. After a decade's experimental exploration, the anomalous Hall conductance can only reach about 0.25 in the units of $2e^2/h$, which was attributed to the tiny Rashba spin-orbit coupling. Here, we theoretically show that Re-intercalation in graphene/CrI$_3$ heterostructure can not only induce sizeable Rashba spin-orbit coupling ($>$ 40~meV), but also open up large band gaps at valleys $K$ (22.2 meV) and $K' $ (30.3 meV), and a global band gap over 5.5 meV (19.5 meV with random Re distribution) hosting QAHE. A low-energy continuum model is constructed to explain the underlying physical mechanism. We find that Rashba spin-orbit coupling is robust against external stress whereas a tensile strain can increase the global bulk gap. Furthermore, we also show that Re-intercalated graphene with hexagonal boron-nitride can also realize QAHE with bulk gap over 40~meV, indicating the tunability of $5d$-intercalated graphene-based heterostructure. Our finding makes a great leap towards the experimental realization of graphene-based QAHE, and will definitely accelerate the practical application of graphene-based low-power electronics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源