论文标题
基于因子图的神经增强,低复杂性接近最高符号检测
Low-complexity Near-optimum Symbol Detection Based on Neural Enhancement of Factor Graphs
论文作者
论文摘要
我们考虑在线性符号间干扰通道上使用因子图框架的应用。基于Ungerboeck观察模型,可以得出具有具有吸引力复杂性特性的检测算法。但是,由于基础因子图包含循环,因此总和算法(SPA)产生了次优算法。在本文中,我们制定并评估有效的策略,以通过神经增强来提高基于因子图的符号检测的性能。特别是,我们将因子节点的神经信念传播和概括是减轻因子图内周期效应的有效方法。通过将通用预处理器应用于通道输出,我们提出了一种简单的技术来改变每个水疗中心的基本因子图。使用这种动态因子图跃迁,我们打算保留水疗消息的外部性质,否则由于周期而受到损害。仿真结果表明,所提出的方法可以大大改善检测性能,甚至可以在各种传输方案中接近后验性能,同时保留在块长度和通道内存中线性线性的复杂性。
We consider the application of the factor graph framework for symbol detection on linear inter-symbol interference channels. Based on the Ungerboeck observation model, a detection algorithm with appealing complexity properties can be derived. However, since the underlying factor graph contains cycles, the sum-product algorithm (SPA) yields a suboptimal algorithm. In this paper, we develop and evaluate efficient strategies to improve the performance of the factor graph-based symbol detection by means of neural enhancement. In particular, we consider neural belief propagation and generalizations of the factor nodes as an effective way to mitigate the effect of cycles within the factor graph. By applying a generic preprocessor to the channel output, we propose a simple technique to vary the underlying factor graph in every SPA iteration. Using this dynamic factor graph transition, we intend to preserve the extrinsic nature of the SPA messages which is otherwise impaired due to cycles. Simulation results show that the proposed methods can massively improve the detection performance, even approaching the maximum a posteriori performance for various transmission scenarios, while preserving a complexity which is linear in both the block length and the channel memory.