论文标题
偏斜和球纤维
Skew and sphere fibrations
论文作者
论文摘要
一个很棒的球体纤维是一个球体捆绑包,总空间$ s^n $,纤维很棒。$ k $ -spheres。鉴于光滑的大球体振动,对任何切线超平面的核心投影都会产生$ \ mathbb {r}^n $ a \ emph {nondegenate}纤维,成对偏斜,$ \ mathbbbb {r}^k $的仿真副本(尽管不是所有的非纤维纤维都可以在这种情况下)。在这里,我们研究了非排定纤维化的拓扑结构和几何形状,我们表明,每种非等级纤维都满足了无穷大的连续性概念,我们证明了几个分类结果。这些结果使我们能够在某些维度上确定哪些非排定纤维通过中央投影对应于大球体纤维。我们使用此通信来确定有关球体振动的最新结果,以更简单,更明确的非排定纤维化设置。例如,我们表明,非等级纤维化的每一个细菌都扩展到全局纤维化,并研究了奇数欧几里得空间中非排定线振动与接触结构之间的关系。我们以多种部分结果的结论,希望对非排效纤维的持续研究以及它们与球体纤维的对应关系,将为无形分类问题提供新的见解。
A great sphere fibration is a sphere bundle with total space $S^n$ and fibers which are great $k$-spheres. Given a smooth great sphere fibration, the central projection to any tangent hyperplane yields a \emph{nondegenerate} fibration of $\mathbb{R}^n$ by pairwise skew, affine copies of $\mathbb{R}^k$ (though not all nondegenerate fibrations can arise in this way). Here we study the topology and geometry of nondegenerate fibrations, we show that every nondegenerate fibration satisfies a notion of Continuity at Infinity, and we prove several classification results. These results allow us to determine, in certain dimensions, precisely which nondegenerate fibrations correspond to great sphere fibrations via the central projection. We use this correspondence to reprove a number of recent results about sphere fibrations in the simpler, more explicit setting of nondegenerate fibrations. For example, we show that every germ of a nondegenerate fibration extends to a global fibration, and we study the relationship between nondegenerate line fibrations and contact structures in odd-dimensional Euclidean space. We conclude with a number of partial results, in hopes that the continued study of nondegenerate fibrations, together with their correspondence with sphere fibrations, will yield new insights towards the unsolved classification problems for sphere fibrations.