论文标题

修订的散射指数,用于表面和质量分形的幂律分布

Revised scattering exponents for a power-law distribution of surface and mass fractals

论文作者

Cherny, Alexander Yu., Anitas, Eugen M., Osipov, Vladimir A., Kuklin, Alexander I.

论文摘要

我们考虑从幂律多分散表面和质量分形出现的小角度散射中产生的散射指数。结果表明,当幂律指数足够大时,一组大小根据幂律分配的分形可以改变其分形维度。结果,由于不同分形位置之间的空间相关性,与该维度相对应的散射指数出现。对于大量动量传递的值,相关性不起作用,并且所产生的散射强度由所有组成分形的强度总和给出。发现对幂律指数的限制。获得的结果概括了Martin的公式,用于多分散分形的散射指数。

We consider scattering exponents arising in small-angle scattering from power-law polydisperse surface and mass fractals. It is shown that a set of fractals, whose sizes are distributed according to a power-law, can change its fractal dimension when the power-law exponent is sufficiently big. As a result, the scattering exponent corresponding to this dimension appears due to the spatial correlations between positions of different fractals. For large values of the momentum transfer, the correlations do not play any role, and the resulting scattering intensity is given by a sum of intensities of all composing fractals. The restrictions imposed on the power-law exponents are found. The obtained results generalize Martin's formulas for the scattering exponents of the polydisperse fractals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源