论文标题
部分可观测时空混沌系统的无模型预测
Information criteria for detecting change-points in the Cox proportional hazards model
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The Cox proportional hazards model, commonly used in clinical trials, assumes proportional hazards. However, it does not hold when, for example, there is a delayed onset of the treatment effect. In such a situation, an acute change in the hazard ratio function is expected to exist. This paper considers the Cox model with change-points and derives AIC-type information criteria for detecting those change-points. The change-point model does not allow for conventional statistical asymptotics due to its irregularity, thus a formal AIC that penalizes twice the number of parameters would not be analytically derived, and using it would clearly give overfitting analysis results. Therefore, we will construct specific asymptotics using the partial likelihood estimation method in the Cox model with change-points. Based on the original derivation method for AIC, we propose information criteria that are mathematically guaranteed. If the partial likelihood is used in the estimation, information criteria with penalties much larger than twice the number of parameters could be obtained in an explicit form. Numerical experiments confirm that the proposed criterion is clearly superior in terms of the original purpose of AIC, which is to provide an estimate that is close to the true structure. We also apply the proposed criterion to actual clinical trial data to indicate that it will easily lead to different results from the formal AIC.