论文标题

三角分区的组合学

Combinatorics of Triangular Partitions

论文作者

Bergeron, François, Mazin, Mikhail

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The aim of this paper is to develop the combinatorics of constructions associated to what we call \emph{triangular partitions}. As introduced in arXiv:2102.07931, these are the partitions whose cells are those lying below the line joining points $(r,0)$ and $(0,s)$, for any given positive reals $r$ and $s$. Classical notions such as Dyck paths and parking functions are naturally generalized by considering the set of partitions included in a given triangular partition. One of our striking results is that the restriction of the Young lattice to triangular partition has a planar Hasse diagram, with many nice properties. It follows that we may generalize the "first-return" recurrence, for the enumeration of classical Dyck paths, to the enumeration of all partitions contained in a fixed triangular one.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源