论文标题

异步,基于期权的多代理策略梯度:有条件推理方法

Asynchronous, Option-Based Multi-Agent Policy Gradient: A Conditional Reasoning Approach

论文作者

Lyu, Xubo, Banitalebi-Dehkordi, Amin, Chen, Mo, Zhang, Yong

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Cooperative multi-agent problems often require coordination between agents, which can be achieved through a centralized policy that considers the global state. Multi-agent policy gradient (MAPG) methods are commonly used to learn such policies, but they are often limited to problems with low-level action spaces. In complex problems with large state and action spaces, it is advantageous to extend MAPG methods to use higher-level actions, also known as options, to improve the policy search efficiency. However, multi-robot option executions are often asynchronous, that is, agents may select and complete their options at different time steps. This makes it difficult for MAPG methods to derive a centralized policy and evaluate its gradient, as centralized policy always select new options at the same time. In this work, we propose a novel, conditional reasoning approach to address this problem and demonstrate its effectiveness on representative option-based multi-agent cooperative tasks through empirical validation. Find code and videos at: \href{https://sites.google.com/view/mahrlsupp/}{https://sites.google.com/view/mahrlsupp/}

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源