论文标题

通过哈密顿和liouvillian学习的Trotterized数字量子模拟的表征和验证

Characterization and Verification of Trotterized Digital Quantum Simulation via Hamiltonian and Liouvillian Learning

论文作者

Pastori, Lorenzo, Olsacher, Tobias, Kokail, Christian, Zoller, Peter

论文摘要

数字量子模拟的目的是通过一系列量子门(一种称为Trotterterization的过程)近似给定目标Hamiltonian的动力学。该近似值的质量可以由所谓的trotter步骤控制,该步骤控制着单位仿真时间所需的量子门的数量。由小动物产生的频镜动力学由时间独立的哈密顿量有效地描述了,被称为Floquet Hamiltonian。在这项工作中,我们提出了Floquet Hamiltonian学习,以重建在猪肉步骤中实验实现的floquet hamiltonian逐订单。此过程是有效的,即,它需要多个测量值,以在系统大小上进行多项式扩展,并且可以轻松地在最新的实验中实现。通过数值示例,我们在验证量子设备验证的背景下提出了方法的几个应用:从数字量子模拟器中不同错误来源的表征到确定设备的最佳操作性。我们表明,我们的协议为新型量子门的反馈环设计和校准提供了基础。此外,它可以扩展到非自动动态的情况,并用于学习floquet liouvillians,从而提供一种表征NISQ量子设备中存在的耗散过程的方法。

The goal of digital quantum simulation is to approximate the dynamics of a given target Hamiltonian via a sequence of quantum gates, a procedure known as Trotterization. The quality of this approximation can be controlled by the so called Trotter step, that governs the number of required quantum gates per unit simulation time. The stroboscopic dynamics generated by Trotterization is effectively described by a time-independent Hamiltonian, referred to as the Floquet Hamiltonian. In this work, we propose Floquet Hamiltonian learning to reconstruct the experimentally realized Floquet Hamiltonian order-by-order in the Trotter step. This procedure is efficient, i.e., it requires a number of measurements that scales polynomially in the system size, and can be readily implemented in state-of-the-art experiments. With numerical examples, we propose several applications of our method in the context of verification of quantum devices: from the characterization of the distinct sources of errors in digital quantum simulators to determining the optimal operating regime of the device. We show that our protocol provides the basis for feedback-loop design and calibration of new types of quantum gates. Furthermore it can be extended to the case of non-unitary dynamics and used to learn Floquet Liouvillians, thereby offering a way of characterizing the dissipative processes present in NISQ quantum devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源