论文标题
Daigle&Freudenberg对希尔伯特第十四个问题的反例的有限一代理想
The finite generation ideal for Daigle & Freudenberg's counterexample to Hilbert's fourteenth problem
论文作者
论文摘要
我们计算了Daigle和Freudenburg对希尔伯特第十四个问题的反例的有限一代。这种理想有助于了解不变的环与有限生成的距离。我们的计算表明,有限的一代理想是由三个无限不变家族产生的理想的根本。我们表明,这三个家庭以及一个额外的不变式形成了sagbi-basis。我们在计算有限的一代理想的计算中使用了sagbi-basis的属性。
We compute the finite generation ideal for Daigle and Freudenburg's counterexample to Hilbert's fourteenth problem. This ideal helps to understand how far the ring of invariants is from being finitely generated. Our calculations show that the finite generation ideal is the radical of an ideal generated by three infinite families of invariants. We show that these three families together with an additional invariant form a SAGBI-basis. We use the properties of our SAGBI-basis in our computation of the finite generation ideal.