论文标题
在多孔介质中稳定且不稳定的毛细管指法,粒度梯度
Stable and unstable capillary fingering in porous media with a gradient in grains size
论文作者
论文摘要
我们对在谷物大小的梯度(因此在典型的毛孔的喉咙)中,对多孔介质中的缓慢排水缓慢提出了理论和实验研究。我们从数学上表明,这种结构梯度和外力在稳定入侵前部时对获得的排水模式具有相似的影响。借助新引入的实验设置,基于透明多孔矩阵的3D印刷,我们说明了这种对等,并将其扩展到前面不稳定的情况。我们还提供了对同一现象的一些入侵 - 渗透模拟,这些模拟与我们的理论和实验结果内联。特别是,我们表明稳定排水界的宽度主要是缩放平均孔入侵阈值的空间梯度以及该(无序)阈值的局部分布。缩放指数来自渗透理论,2D系统为-0.57。总体而言,我们提出了一个统一的理论,用于在大多数古典场景中提高双流体流量。
We present a theoretical and experimental investigation of slow drainage in porous media with a gradient in the grains size (and hence in the typical pores' throats), in an external gravitational field. We mathematically show that such structural gradient and external force have a similar effect on the obtained drainage patterns, when they stabilise the invasion front. With the help of a newly introduced experimental set-up, based on the 3D-print of transparent porous matrices, we illustrate this equivalence, and extend it to the case where the front is unstable. We also present some invasion-percolation simulations of the same phenomena, which are inline with our theoretical and experimental results. In particular, we show that the width of stable drainage fronts mainly scales with the spatial gradient of the average pore invasion threshold and with the local distribution of this (disordered) threshold. The scaling exponent results from percolation theory and is -0.57 for 2D systems. Overall, we propose a unifying theory for the up-scaling of dual fluid flows in most classical scenarii.