论文标题
部分可观测时空混沌系统的无模型预测
Poincaré dualization and Massey products
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We study the rational homotopy theoretic and geometric properties of a construction which extends any cohomologically connected, finite type cdga to one satisfying cohomological Poincaré duality. Using this construction we show that non-trivial quadruple Massey products can pull back trivially under non-zero degree maps of Poincaré duality spaces, unlike the case of triple Massey products as studied by Taylor. We also show that a non-zero degree map between formal rational Poincaré duality spaces need not be formal. Our consideration of Massey products naturally ties in with cyclic $A_\infty$-algebras modelling Poincaré duality spaces.