论文标题
社会兼容的导航数据集(SCAND):社会导航演示的大规模数据集
Socially Compliant Navigation Dataset (SCAND): A Large-Scale Dataset of Demonstrations for Social Navigation
论文作者
论文摘要
社会导航是自治人(例如机器人)在其他智能代理(例如人类)的面前以“社会符合社会规定”方式导航的能力。随着在人口稠密环境中自动浏览移动机器人的出现(例如,家庭和餐馆中的家庭服务机器人以及公共人行道上的食品送货机器人),在这些机器人上纳入了社会符合社会符合社会的导航行为对于确保安全舒适的人类机器人的安全至关重要。为了应对这一挑战,模仿学习是一个有前途的框架,因为人类更容易演示社会导航的任务,而不是制定奖励功能,以准确捕获社会导航的复杂多目标设置。但是,模仿学习和逆强化学习用于移动机器人的社会导航,目前由于缺乏大规模数据集而阻碍了捕获野外社会符合社会符合社会的机器人导航示范。为了填补这一空白,我们介绍了具有社会符合社会的导航数据集(Scand),这是一个大规模的,第一人称视图数据集的社会兼容导航演示数据集。我们的数据集包含8.7个小时,138个轨迹,25英里的社会符合人类的遥控驾驶演示,其中包括多模态数据流,包括3D激光雷达,操纵杆命令,回弹,视觉,视觉和惯性信息,在两个不同的移动机器人上收集了两个不同的动力学示例和四个不同的人类演示者,并在两个不同的移动机器人上收集了两种不同的移动机器人。我们还通过现实世界机器人实验进行初步分析和验证,并表明通过模仿学习扫描学到的导航政策会产生社会兼容的行为
Social navigation is the capability of an autonomous agent, such as a robot, to navigate in a 'socially compliant' manner in the presence of other intelligent agents such as humans. With the emergence of autonomously navigating mobile robots in human populated environments (e.g., domestic service robots in homes and restaurants and food delivery robots on public sidewalks), incorporating socially compliant navigation behaviors on these robots becomes critical to ensuring safe and comfortable human robot coexistence. To address this challenge, imitation learning is a promising framework, since it is easier for humans to demonstrate the task of social navigation rather than to formulate reward functions that accurately capture the complex multi objective setting of social navigation. The use of imitation learning and inverse reinforcement learning to social navigation for mobile robots, however, is currently hindered by a lack of large scale datasets that capture socially compliant robot navigation demonstrations in the wild. To fill this gap, we introduce Socially CompliAnt Navigation Dataset (SCAND) a large scale, first person view dataset of socially compliant navigation demonstrations. Our dataset contains 8.7 hours, 138 trajectories, 25 miles of socially compliant, human teleoperated driving demonstrations that comprises multi modal data streams including 3D lidar, joystick commands, odometry, visual and inertial information, collected on two morphologically different mobile robots a Boston Dynamics Spot and a Clearpath Jackal by four different human demonstrators in both indoor and outdoor environments. We additionally perform preliminary analysis and validation through real world robot experiments and show that navigation policies learned by imitation learning on SCAND generate socially compliant behaviors