论文标题
超级:使用概率因果方法的假设推理以及如何查询方法
HypeR: Hypothetical Reasoning With What-If and How-To Queries Using a Probabilistic Causal Approach
论文作者
论文摘要
what-if(为数据库的更新提供)和如何(如何修改数据库以实现目标)分析为希望检查假设方案的用户提供洞察力,而无需对数据库进行实际更改,从而帮助其领域中的计划策略。通常,通过测试现有数据库中更新的效果对您感兴趣的查询创建的特定视图来完成此类分析。但是,在实际情况下,由于隐式语义依赖性,对数据库特定部分的更新可能会影响元组和属性。为了在适应此类依赖关系时允许假设的推理,我们开发了一个支持概率因果关系模型捕获的属性的概率依赖性的框架,该框架支持何种属性和操作方法。我们将SQL语法扩展到包括表达这些假设查询的必要操作员,定义其语义,设计有效的算法和优化,以使用因果关系和概率数据库中的概念来计算其结果,并在实验中评估我们方法的有效性。
What-if (provisioning for an update to a database) and how-to (how to modify the database to achieve a goal) analyses provide insights to users who wish to examine hypothetical scenarios without making actual changes to a database and thereby help plan strategies in their fields. Typically, such analyses are done by testing the effect of an update in the existing database on a specific view created by a query of interest. In real-world scenarios, however, an update to a particular part of the database may affect tuples and attributes in a completely different part due to implicit semantic dependencies. To allow for hypothetical reasoning while accommodating such dependencies, we develop HypeR, a framework that supports what-if and how-to queries accounting for probabilistic dependencies among attributes captured by a probabilistic causal model. We extend the SQL syntax to include the necessary operators for expressing these hypothetical queries, define their semantics, devise efficient algorithms and optimizations to compute their results using concepts from causality and probabilistic databases, and evaluate the effectiveness of our approach experimentally.