论文标题
人体化身建模的结构化局部辐射场
Structured Local Radiance Fields for Human Avatar Modeling
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
It is extremely challenging to create an animatable clothed human avatar from RGB videos, especially for loose clothes due to the difficulties in motion modeling. To address this problem, we introduce a novel representation on the basis of recent neural scene rendering techniques. The core of our representation is a set of structured local radiance fields, which are anchored to the pre-defined nodes sampled on a statistical human body template. These local radiance fields not only leverage the flexibility of implicit representation in shape and appearance modeling, but also factorize cloth deformations into skeleton motions, node residual translations and the dynamic detail variations inside each individual radiance field. To learn our representation from RGB data and facilitate pose generalization, we propose to learn the node translations and the detail variations in a conditional generative latent space. Overall, our method enables automatic construction of animatable human avatars for various types of clothes without the need for scanning subject-specific templates, and can generate realistic images with dynamic details for novel poses. Experiment show that our method outperforms state-of-the-art methods both qualitatively and quantitatively.