论文标题

Navier-Stokes方程的COUETTE附近的2D剪切流的稳定性阈值

Stability threshold for 2D shear flows near Couette of the Navier-Stokes equation

论文作者

Bian, Dongfen, Pu, Xueke

论文摘要

在本文中,我们考虑了2D剪切流$(y(y),0)^{\ top} $的稳定性阈值。当剪切流与sobolev规范接近couette Flow $(y,0)^{\ top} $在某种意义上,我们在某种意义上证明,如果初始数据$ u_0 $满足$ \ | U_0-(u(y),0),0) $ t \ gg re^{1/3} $的流也接近couette流,为$ t \ to \ infty $。

In this paper, we consider the stability threshold of the 2D shear flow $(U(y),0)^{\top}$ of the Navier-Stokes equation at high Reynolds number $Re$. When the shear flow is near in Sobolev norm to the Couette flow $(y,0)^{\top}$ in some sense, we prove that if the initial data $u_0$ satisfies $\|u_0-(U(y),0)^{\top}\|\leq εRe^{-1/3}$, then the solution of the 2D Navier-Stokes equation approaches to some shear flow which is also close to the Couette flow for $t\gg Re^{1/3}$, as $t\to\infty$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源