论文标题

CGUA:背景引导和不配对的弱监督人员搜索

CGUA: Context-Guided and Unpaired-Assisted Weakly Supervised Person Search

论文作者

Jia, Chengyou, Luo, Minnan, Yan, Caixia, Chang, Xiaojun, Zheng, Qinghua

论文摘要

最近,提议弱监督的人搜索来丢弃人类注销的身份,并仅使用边界框注释来训练模型。解决此问题的自然方法是将其分为检测和无监督的重新识别(RE-ID)步骤。但是,以这种方式,忽略了无约束场景图像中的两个重要线索。一方面,现有的无监督重新ID模型仅利用场景图像中的裁剪图像,但忽略了其丰富的上下文信息。另一方面,在现实世界中有许多未配合的人。直接与他们打交道,因为独立身份会导致长尾效应,同时完全丢弃它们可能会导致严重的信息丢失。鉴于这些挑战,我们引入了背景引导和不配对的(CGUA)弱监督的人搜索框架。具体而言,我们提出了一种新颖的上下文引导群集(CGC)算法,以利用聚类过程中的上下文信息,并提出一个不成对的记忆(UAM)单元(UAM)单元,以通过将其推开来区分未配对和配对的人。广泛的实验表明,所提出的方法可以通过很大的边距超过最新的弱监督方法(在Cuhk-Sysu上的地图超过5%)。此外,我们的方法通过利用更多样化的未标记数据来实现与最先进的监督方法可比性或更好的性能。代码和模型将很快发布。

Recently, weakly supervised person search is proposed to discard human-annotated identities and train the model with only bounding box annotations. A natural way to solve this problem is to separate it into detection and unsupervised re-identification (Re-ID) steps. However, in this way, two important clues in unconstrained scene images are ignored. On the one hand, existing unsupervised Re-ID models only leverage cropped images from scene images but ignore its rich context information. On the other hand, there are numerous unpaired persons in real-world scene images. Directly dealing with them as independent identities leads to the long-tail effect, while completely discarding them can result in serious information loss. In light of these challenges, we introduce a Context-Guided and Unpaired-Assisted (CGUA) weakly supervised person search framework. Specifically, we propose a novel Context-Guided Cluster (CGC) algorithm to leverage context information in the clustering process and an Unpaired-Assisted Memory (UAM) unit to distinguish unpaired and paired persons by pushing them away. Extensive experiments demonstrate that the proposed approach can surpass the state-of-the-art weakly supervised methods by a large margin (more than 5% mAP on CUHK-SYSU). Moreover, our method achieves comparable or better performance to the state-of-the-art supervised methods by leveraging more diverse unlabeled data. Codes and models will be released soon.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源