论文标题
tate-shafarevich组的渐近公式,由$ p $ - 弹药椭圆形曲线超过反风速扩展
Asymptotic formula for Tate-Shafarevich groups of $p$-supersingular elliptic curves over anticyclotomic extensions
论文作者
论文摘要
令$ p \ ge 5 $为质数,$ e/\ mathbf {q} $椭圆形曲线,$ p $ supersingular降低。根据广义的Heegner假设,我们研究了tate-shafarevich组的$ p $ - 主要子组,$ e $ $ e $ y的数字字段中包含的数字字段中包含的反旋转$ \ mathbf {z} _p $ extension the $ p $ p $ p $ splits的想象中的Quadratic figratic fiqu。
Let $p\ge 5$ be a prime number and $E/\mathbf{Q}$ an elliptic curve with good supersingular reduction at $p$. Under the generalized Heegner hypothesis, we investigate the $p$-primary subgroups of the Tate--Shafarevich groups of $E$ over number fields contained inside the anticyclotomic $\mathbf{Z}_p$-extension of an imaginary quadratic field where $p$ splits.