论文标题
讨价还价:在车辆边缘计算网络中用于资源分配和任务卸载的游戏理论方法
BARGAIN-MATCH: A Game Theoretical Approach for Resource Allocation and Task Offloading in Vehicular Edge Computing Networks
论文作者
论文摘要
车辆边缘计算(VEC)通过在VNS边缘部署云计算资源,成为了有前途的车辆网络(VNS)架构。这项工作旨在优化VEC网络中的资源分配和任务卸载。具体而言,我们制定了游戏理论资源分配和任务卸载问题(GTRATOP),该问题旨在通过共同考虑对合作,车辆之间的竞争,VEC服务器和车辆之间的异质性以及VNS固有动态之间的竞争,竞争,竞争,竞争的动机,竞争的动机,旨在最大程度地提高系统性能。由于配制的Gtratop是NP-HARD,因此我们通过合并讨价还价的游戏和匹配游戏,为VEC网络中的资源分配和任务卸载提出了一种自适应方法,这称为“讨价还价”。首先,对于资源分配,提出了基于游戏的激励措施来刺激车辆和VEC服务器来协商最佳资源分配和定价决策。其次,对于任务卸载,提出了一对一的匹配方案来决定最佳的卸载策略。第三,认为动态和随时间变化的功能被认为是为了使讨价还价匹配的策略适应实时VEC网络。此外,廉价搭配被证明是稳定且弱小的帕累托最佳选择。仿真结果表明,与其他方法相比,所提出的讨价还价匹配可实现卓越的系统性能和效率,尤其是在系统工作量很重的情况下。
Vehicular edge computing (VEC) is emerging as a promising architecture of vehicular networks (VNs) by deploying the cloud computing resources at the edge of the VNs. This work aims to optimize resource allocation and task offloading in VEC networks. Specifically, we formulate a game theoretical resource allocation and task offloading problem (GTRATOP) that aims to maximize the system performance by jointly considering the incentive for cooperation, competition among vehicles, heterogeneity between VEC servers and vehicles, and inherent dynamic of VNs. Since the formulated GTRATOP is NP-hard, we propose an adaptive approach for resource allocation and task offloading in VEC networks by incorporating bargaining game and matching game, which is called BARGAIN-MATCH. First, for resource allocation, a bargaining game-based incentive is proposed to stimulate the vehicles and VEC servers to negotiate the optimal resource allocation and pricing decisions. Second, for task offloading, a many-to-one matching scheme is proposed to decide the optimal offloading strategies. Third, the dynamic and time-varying features are considered to adapt the strategies of BARGAIN-MATCH to the real-time VEC networks. Moreover, the BARGAIN-MATCH is proved to be stable and weak Pareto optimal. Simulation results demonstrate that the proposed BARGAIN-MATCH achieves superior system performance and efficiency compared to other methods, especially when the system workload is heavy.