论文标题
大维矩阵椭圆因子模型的歧管原理分析
Manifold Principle Component Analysis for Large-Dimensional Matrix Elliptical Factor Model
论文作者
论文摘要
矩阵因子模型在科学领域(例如计量经济学)一直越来越流行,该领域是矩阵序列的双向减小工具。在本文中,我们首次提出了矩阵椭圆因子模型,该模型可以更好地描述矩阵值数据的重型属性,尤其是在金融中。歧管原理分析(MPCA)首次引入以估计行/列加载空间。 MPCA首先对每个“局部”矩阵观察执行奇异值分解(SVD),然后在所有观测值中平均进行局部估计的空间,而现有的二维PCA等现有的空间则首先跨观察结果整合数据,然后进行样品共价矩阵的特征值分解。我们提出了两种版本的MPCA算法,以稳健地估算因子加载矩阵,而无需对因素和特质错误的任何时刻限制。在轻度条件下得出了因子加载矩阵,因子评分矩阵和公共成分矩阵的相应估计值的理论收敛速率。我们还根据特征值想法提出了行/列因子编号的强大估计器,这被证明是一致的。关于财务回报数据的数值研究和真实示例数据检查我们的模型的灵活性以及MPCA方法的有效性。
Matrix factor model has been growing popular in scientific fields such as econometrics, which serves as a two-way dimension reduction tool for matrix sequences. In this article, we for the first time propose the matrix elliptical factor model, which can better depict the possible heavy-tailed property of matrix-valued data especially in finance. Manifold Principle Component Analysis (MPCA) is for the first time introduced to estimate the row/column loading spaces. MPCA first performs Singular Value Decomposition (SVD)for each "local" matrix observation and then averages the local estimated spaces across all observations, while the existing ones such as 2-dimensional PCA first integrates data across observations and then does eigenvalue decomposition of the sample covariance matrices. We propose two versions of MPCA algorithms to estimate the factor loading matrices robustly, without any moment constraints on the factors and the idiosyncratic errors. Theoretical convergence rates of the corresponding estimators of the factor loading matrices, factor score matrices and common components matrices are derived under mild conditions. We also propose robust estimators of the row/column factor numbers based on the eigenvalue-ratio idea, which are proven to be consistent. Numerical studies and real example on financial returns data check the flexibility of our model and the validity of our MPCA methods.