论文标题

Viterbo的光谱构成统一空间的猜想

Viterbo's spectral bound conjecture for homogeneous spaces

论文作者

Guillermou, Stéphane, Vichery, Nicolas

论文摘要

我们在紧凑的cotangent束$ t^*m $的紧凑型Lagrangian submanifolds上的频谱距离构成了一个猜想。如果我们考虑到最大Reeb和弦的长度,这也适用于一些沉浸的Lagrangian Submanifolds。

We prove a conjecture of Viterbo about the spectral distance on the space of compact exact Lagrangian submanifolds of a cotangent bundle $T^*M$ in the case where $M$ is a compact homogeneous space: if such a Lagrangian submanifold is contained in the unit ball bundle of $T^*M$, its spectral distance to the zero section is uniformly bounded. This also holds for some immersed Lagrangian submanifolds if we take into account the length of the maximal Reeb chord.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源