论文标题

碰撞单原子自旋探针的敏感性

Sensitivity of a collisional single-atom spin probe

论文作者

Nettersheim, Jens, Bouton, Quentin, Adam, Daniel, Widera, Artur

论文摘要

我们研究了碰撞单原子探针对超低气体的敏感性。非弹性自旋交换碰撞将有关气体温度t或外部磁场B的信息映射到单原子探针的量子自旋构图,并且先前的工作对短期非平衡自旋动力学的灵敏度增强[1]。在这里,我们从数值上研究了这种单原子探针对各种可观察物的稳态灵敏度。我们发现,探针在(B,T)参数图中显示出明显的灵敏度最大值,尽管基础自旋交换速率尺度单调的温度和磁场单调。在参数空间中,当探针在外部施加的磁场中传感热能和Zeeman能量之间的能量比时,探针通常具有最大的灵敏度,而对绝对能量的敏感性,即动力学和Zeeman Energy的敏感性。我们确定对给定绝对能产生灵敏度最大值的参数,我们可以将其直接比较麦克斯韦 - 麦克斯韦·波尔兹曼分布与Zeeman-Energy-Emergy分开的直接比较。我们将平衡结果与单个原子量子探针的非平衡实验结果进行了比较,这表明参数空间中的灵敏度最大值在非平衡动力学中也质疑也很普遍,而定量差异仍然存在。因此,我们的工作为这种单原子量子探针的性质和性能提供了微观解释,将热力学特性与微观相互作用机制联系起来。我们的结果为在(B,T)参数空间中优化量子探针应用的方式铺平了道路,超出了非平衡动力学的提升。

We study the sensitivity of a collisional single-atom probe for ultracold gases. Inelastic spin-exchange collisions map information about the gas temperature T or external magnetic field B onto the quantum spin-population of single-atom probes, and previous work showed enhanced sensitivity for short-time nonequilibrium spin dynamics [1]. Here, we numerically investigate the steady-state sensitivity of such single-atom probes to various observables. We find that the probe shows distinct sensitivity maxima in the (B, T ) parameter diagram, although the underlying spin-exchange rates scale monotonically with temperature and magnetic field. In parameter space, the probe generally has the largest sensitivity when sensing the energy ratio between thermal energy and Zeeman energy in an externally applied magnetic field, while the sensitivity to the absolute energy, i.e., the sum of kinetic and Zeeman energy, is low. We identify the parameters yielding sensitivity maxima for a given absolute energy, which we can relate to a direct comparison of the thermal Maxwell-Boltzmann distribution with the Zeeman-energy splitting. We compare our equilibrium results to nonequilibrium experimental results from a single-atom quantum probe, showing that the sensitivity maxima in parameter space qualitatively prevail also in the nonequilibrium dynamics, while a quantitative difference remains. Our work thereby offers a microscopic explanation for the properties and performance of this single-atom quantum probe, connecting thermodynamic properties to microscopic interaction mechanisms. Our results pave the way for optimization of quantum-probe applications in (B, T ) parameter space beyond the previously shown boost by nonequilibrium dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源