论文标题
X-Cube Fracton拓扑顺序中动态签名的演变
Evolution of Dynamical Signature in the X-cube Fracton Topological Order
论文作者
论文摘要
作为具有拓扑和几何形状异国情调相互作用的拓扑顺序的非常规的实现,Fracton(拓扑)订单具有宽大拓扑基态脱落性和仅在一定子空间内可移动的细分激发。它在完全可解决的三维X-Cube模型中已知,该模型普遍代表了I型Fracton顺序,该模型是从缺乏空间变形的字符串样算子上的细分激发对迁移率的约束。为了揭示拓扑和几何形状的相互作用,在本文中,我们通过大规模的量子蒙特卡洛模拟和随机分析延续研究了X-Cube模型中X-Cube模型中的动力特征。我们计算了分裂阶段中的二维激发(即,分布量,线子和平面)的真实空间相关函数和动态结构因子,并通过增加外部磁场来及其演变成琐事的顺磁性阶段。我们发现在法族阶段,相关函数和光谱函数表现出明显的各向异性,这是由潜在的迁移率约束所引起的。另一方面,外部磁场成功引起量子波动,并为沿着移动性约束允许的子空间的激发提供了流动性。这些数值结果提供了分形式订单中细分颗粒的动力学特征的演变,表明对局部动力激发的局部动力学特性的迁移率约束与分布型拓扑顺序的存在密切相关。该结果还将有助于光谱测量(例如中子散射和核磁共振)的潜在实验鉴定。
As an unconventional realization of topological orders with an exotic interplay of topology and geometry, fracton (topological) orders feature subextensive topological ground state degeneracy and subdimensional excitations that are movable only within a certain subspace. It has been known in the exactly solvable three-dimensional X-cube model that universally represents the type-I fracton orders, that mobility constraints on subdimensional excitations originate from the absence of spatially deformable string-like operators. To unveil the interplay of topology and geometry, in this paper, we study the dynamical signature in the X-cube model in the presence of external Zeeman fields via large-scale quantum Monte Carlo simulation and stochastic analytic continuation. We compute both real-space correlation functions and dynamic structure factors of subdimensional excitations (i.e., fractons, lineons, and planons) in the fracton phase and their evolution into the trivial paramagnetic phase by increasing external fields. We find in the fracton phase, that the correlation functions and the spectral functions show clear anisotropy exactly caused by the underlying mobility constraints. On the other hand, the external fields successfully induce quantum fluctuations and offer mobility to excitations along the subspace allowed by mobility constraints. These numerical results provide the evolution of a dynamical signature of subdimensional particles in fracton orders, indicating that the mobility constraints on local dynamical properties of subdimensional excitations are deeply related to the existence of fracton topological order. The results will also be helpful in potential experimental identifications in spectroscopy measurements such as neutron scattering and nuclear magnetic resonance.