论文标题

Hölder的规律性和liouville属性具有功率增长术语的非线性椭圆形不平等现象

Hölder regularity and Liouville properties for nonlinear elliptic inequalities with power-growth gradient terms

论文作者

Goffi, Alessandro

论文摘要

本说明研究了局部积分梯度界限,以用于大量部分差分不平等的分布解,其散发形式和类似功率的一阶项的扩散。这些估计的应用是两个倍。首先,我们在此类的扩散PDE上显示了(尖锐的)全球Hölder分配半分布的规律性,其一阶术语具有超自然生长和右侧的一阶术语,并在适当的Morrey类中放置在有限和常规的开放式$ω$上。其次,我们为具有超线一阶术语的不平等的整个liouville属性提供了新的证明,而没有假设对相应均质偏差不等式的解决方案上有任何一侧绑定。我们还讨论了先前特性的一些扩展,以在亚riemannian几何形状中产生的问题,并讨论在非相入的完全差异歧管上构成的部分差异不平等,在大地测量球的适当面积生长条件下,在这两个方向上提供了新的结果。这些方法依赖于整体参数,并且不利用最大和比较原则。

This note studies local integral gradient bounds for distributional solutions of a large class of partial differential inequalities with diffusion in divergence form and power-like first-order terms. The applications of these estimates are two-fold. First, we show the (sharp) global Hölder regularity of distributional semi-solutions to this class of diffusive PDEs with first-order terms having supernatural growth and right-hand side in a suitable Morrey class posed on a bounded and regular open set $Ω$. Second, we provide a new proof of entire Liouville properties for inequalities with superlinear first-order terms without assuming any one-side bound on the solution for the corresponding homogeneous partial differential inequalities. We also discuss some extensions of the previous properties to problems arising in sub-Riemannian geometry and also to partial differential inequalities posed on noncompact complete Riemannian manifolds under appropriate area-growth conditions of the geodesic spheres, providing new results in both these directions. The methods rely on integral arguments and do not exploit maximum and comparison principles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源