论文标题
精度重力的承诺和局限性:应用于天王星和海王星的内部结构
The Promise and Limitations of Precision Gravity: Application to the Interior Structure of Uranus and Neptune
论文作者
论文摘要
我们研究天王星和海王星对重力场的高精度测量的限制能力,这可以由低的periapse轨道轨道传递。我们的研究是实用的,评估了这种使命在行星结构方面的可能可交付成果和局限性。我们的研究也是学术性的,以一般的方式评估低阶重力,高阶重力,旋转率和惯性矩(MOI)在约束行星结构中的相对重要性。我们试图通过参数化密度曲线的MCMC采样来探索行星的所有可能的内部密度结构,这些内部密度结构与假设的重力数据一致。当重力场是今天的重力场时,旋转速率的不确定性在10分钟内就不重要,因为它们与重力系数中的不确定性互换。通过同样的标记,当重力场精确确定时,必须知道旋转速率是可比较的精度。当重力和旋转众所周知时,MOI会受到良好的约束,限制了独立MOI确定的实用性,除非它们非常精确。对于天王星和海王星,密度曲线可以受到良好的约束。然而,H/H/H/H/H,水状挥发物和岩石在深内部的相对作用的非唯一性仍然会持续使用高精度的重力数据。然而,可以鉴定出任何大规模组成梯度区域的位置和大小(在压力空间中),从而可以更好地了解天王星或海王星的内饰。
We study the constraining power of a high-precision measurement of the gravity field for Uranus and Neptune, as could be delivered by a low periapse orbiter. Our study is practical, assessing the possible deliverables and limitations of such a mission with respect to the structure of the planets. Our study is also academic, assessing in a general way the relative importance of the low order gravity, high order gravity, rotation rate, and moment of inertia (MOI) in constraining planetary structure. We attempt to explore all possible interior density structures of a planet that are consistent with hypothetical gravity data, via MCMC sampling of parameterized density profiles. When the gravity field is poorly known, as it is today, uncertainties in the rotation rate on the order of 10 minutes are unimportant, as they are interchangeable with uncertainties in the gravity coefficients. By the same token, when the gravity field is precisely determined the rotation rate must be known to comparable precision. When gravity and rotation are well known the MOI becomes well-constrained, limiting the usefulness of independent MOI determinations unless they are extraordinarily precise. For Uranus and Neptune, density profiles can be well-constrained. However, the non-uniqueness of the relative roles of H/He, watery volatiles, and rock in the deep interior will still persist with high-precision gravity data. Nevertheless, the locations and magnitudes (in pressure-space) of any large-scale composition gradient regions can likely be identified, offering a crucially better picture of the interiors of Uranus or Neptune.