论文标题
限制参数推断为学习的原则
Constrained Parameter Inference as a Principle for Learning
论文作者
论文摘要
在神经网络中的学习通常被构成一个问题,其中有针对性的误差信号直接传播到参数,并用于产生诱导更最佳网络行为的更新。误差(BP)的反向传播是这种方法的一个例子,已被证明是随机梯度下降到深神经网络的非常成功的应用。我们建议参数推断(COPI)作为学习的新原则。 COPI方法假定可以根据对局部神经元活动的观察来推断其价值的方式来建立学习。我们发现,在与神经状态的自上而下的神经输入和自上而下的神经状态扰动的限制下,可以进行网络参数的估计。我们表明,COPI所需的去相关性允许以极高的学习率学习,与BP使用的自适应优化器的学习率具有竞争力。我们进一步证明,COPI提供了一种新方法来进行分析和网络压缩。最后,我们认为,COPI可能会在生物网络中的学习中发明新的启示,这证明了大脑中的去相关的证据。
Learning in neural networks is often framed as a problem in which targeted error signals are directly propagated to parameters and used to produce updates that induce more optimal network behaviour. Backpropagation of error (BP) is an example of such an approach and has proven to be a highly successful application of stochastic gradient descent to deep neural networks. We propose constrained parameter inference (COPI) as a new principle for learning. The COPI approach assumes that learning can be set up in a manner where parameters infer their own values based upon observations of their local neuron activities. We find that this estimation of network parameters is possible under the constraints of decorrelated neural inputs and top-down perturbations of neural states for credit assignment. We show that the decorrelation required for COPI allows learning at extremely high learning rates, competitive with that of adaptive optimizers, as used by BP. We further demonstrate that COPI affords a new approach to feature analysis and network compression. Finally, we argue that COPI may shed new light on learning in biological networks given the evidence for decorrelation in the brain.