论文标题
通过元知识编码的复合域概括
Compound Domain Generalization via Meta-Knowledge Encoding
论文作者
论文摘要
域的概括(DG)旨在通过使用多个可见源域的知识来改善看不见的目标域的泛化性能。主流DG方法通常假定每个源样本的域标签是先验的,这是在许多现实世界应用中得到满足的挑战。在本文中,我们研究了复合DG的实用问题,该问题将离散的域假设放松到混合源域设置。另一方面,当前的DG算法将重点放在跨域(一Vs-One)的语义不变性的重点,同时更少注意整体语义结构(ManyVs-Many)。这种整体语义结构在这里被称为元知识,对于学习可推广的表示至关重要。为此,我们通过元知识编码(COMEN)提出复合域的概括,这是一种以两个步骤自动发现和建模潜在域的通用方法。首先,我们引入了样式诱导的特定区域归一化(SDNORM),以重新归一化多模式的基础分布,从而将源域的混合物分为潜在群集。其次,我们利用原型表示,类的质心,在嵌入空间中使用两个平行和互补的模块执行关系建模,这些模块明确编码了分布外泛化的语义结构。对四个标准DG基准测试的实验表明,Comen不需要域监督就超过了最先进的性能。
Domain generalization (DG) aims to improve the generalization performance for an unseen target domain by using the knowledge of multiple seen source domains. Mainstream DG methods typically assume that the domain label of each source sample is known a priori, which is challenged to be satisfied in many real-world applications. In this paper, we study a practical problem of compound DG, which relaxes the discrete domain assumption to the mixed source domains setting. On the other hand, current DG algorithms prioritize the focus on semantic invariance across domains (one-vs-one), while paying less attention to the holistic semantic structure (many-vs-many). Such holistic semantic structure, referred to as meta-knowledge here, is crucial for learning generalizable representations. To this end, we present Compound Domain Generalization via Meta-Knowledge Encoding (COMEN), a general approach to automatically discover and model latent domains in two steps. Firstly, we introduce Style-induced Domain-specific Normalization (SDNorm) to re-normalize the multi-modal underlying distributions, thereby dividing the mixture of source domains into latent clusters. Secondly, we harness the prototype representations, the centroids of classes, to perform relational modeling in the embedding space with two parallel and complementary modules, which explicitly encode the semantic structure for the out-of-distribution generalization. Experiments on four standard DG benchmarks reveal that COMEN exceeds the state-of-the-art performance without the need of domain supervision.