论文标题

生物染色器:嵌入超低功率基于SEMG的手势识别的变压器

Bioformers: Embedding Transformers for Ultra-Low Power sEMG-based Gesture Recognition

论文作者

Burrello, Alessio, Morghet, Francesco Bianco, Scherer, Moritz, Benatti, Simone, Benini, Luca, Macii, Enrico, Poncino, Massimo, Pagliari, Daniele Jahier

论文摘要

人机相互作用正在康复任务中获得关注,例如控制假肢或机器人手臂。鉴于SEMG信号采集是非侵入性的,并且与肌肉收缩直接相关,因此利用表面肌电图(SEMG)信号的手势识别是最有前途的方法之一。但是,对这些信号的分析仍然提出许多挑战,因为类似的手势会导致相似的肌肉收缩。因此,所得的信号形状几乎相同,导致分类精度低。为了应对这一挑战,采用复杂的神经网络,需要大量的记忆足迹,消耗相对较高的能量并限制用于分类的设备的最大电池寿命。这项工作通过引入生物形态来解决这个问题。这个新的基于注意力集中的体系结构的新家族逐渐达到最先进的性能,同时减少了4.9倍的参数和操作的数量。此外,通过引入新的主体间预训练,我们将最佳生物镜的准确性提高了3.39%,匹配最先进的准确性,而没有任何额外的推断成本。在平行的,超低的功率(PULP)微控制器单元(MCU),Greenwaves GAP8上部署我们最佳性能的生物形态,我们的推理潜伏期和能量分别为2.72 ms和0.14 MJ,比以前的先前的实际神经网络低8.0倍,同时占据了94.2 Kb of Memory of 94.2 Kb of Memory。

Human-machine interaction is gaining traction in rehabilitation tasks, such as controlling prosthetic hands or robotic arms. Gesture recognition exploiting surface electromyographic (sEMG) signals is one of the most promising approaches, given that sEMG signal acquisition is non-invasive and is directly related to muscle contraction. However, the analysis of these signals still presents many challenges since similar gestures result in similar muscle contractions. Thus the resulting signal shapes are almost identical, leading to low classification accuracy. To tackle this challenge, complex neural networks are employed, which require large memory footprints, consume relatively high energy and limit the maximum battery life of devices used for classification. This work addresses this problem with the introduction of the Bioformers. This new family of ultra-small attention-based architectures approaches state-of-the-art performance while reducing the number of parameters and operations of 4.9X. Additionally, by introducing a new inter-subjects pre-training, we improve the accuracy of our best Bioformer by 3.39%, matching state-of-the-art accuracy without any additional inference cost. Deploying our best performing Bioformer on a Parallel, Ultra-Low Power (PULP) microcontroller unit (MCU), the GreenWaves GAP8, we achieve an inference latency and energy of 2.72 ms and 0.14 mJ, respectively, 8.0X lower than the previous state-of-the-art neural network, while occupying just 94.2 kB of memory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源