论文标题

评估非侵入性热成像,以检测OnChoceriasis蠕虫的生存力

Evaluation of Non-Invasive Thermal Imaging for detection of Viability of Onchocerciasis worms

论文作者

Dedhiya, Ronak, Kakileti, Siva Teja, Deepu, Goutham, Gopinath, Kanchana, Opoku, Nicholas, King, Christopher, Manjunath, Geetha

论文摘要

当今世界上有50万人的Chocercerias正在引起失明。该疾病的药物发育会瘫痪,因为没有侵入性手术就无法衡量该药物的有效性。通过评估OnChocerca蠕虫的可行性,药物疗效测量需要患者进行结节切除术,这是侵入性,昂贵,耗时,耗时,技能依赖性,基础设施依赖性和延长过程。在本文中,我们讨论了有史以来的第一项研究,该研究建议将机器学习在热成像上使用,以无创,准确地预测蠕虫的生存能力。本文的关键贡献是(i)独特的热成像协议以及预处理步骤,例如对齐,注册和分割,以提取可解释的特征(ii)提取相关语义特征(III)开发准确分类器,以检测结节中可行蠕虫的存在。当对30名参与者的前瞻性测试数据进行测试时,我们在曲线(AUC)下达到了一个0.85的面积。

Onchocerciasis is causing blindness in over half a million people in the world today. Drug development for the disease is crippled as there is no way of measuring effectiveness of the drug without an invasive procedure. Drug efficacy measurement through assessment of viability of onchocerca worms requires the patients to undergo nodulectomy which is invasive, expensive, time-consuming, skill-dependent, infrastructure dependent and lengthy process. In this paper, we discuss the first-ever study that proposes use of machine learning over thermal imaging to non-invasively and accurately predict the viability of worms. The key contributions of the paper are (i) a unique thermal imaging protocol along with pre-processing steps such as alignment, registration and segmentation to extract interpretable features (ii) extraction of relevant semantic features (iii) development of accurate classifiers for detecting the existence of viable worms in a nodule. When tested on a prospective test data of 30 participants with 48 palpable nodules, we achieved an Area Under the Curve (AUC) of 0.85.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源