论文标题
量子逻辑增强的固态旋转合奏中的传感
Quantum Logic Enhanced Sensing in Solid-State Spin Ensembles
论文作者
论文摘要
我们展示了量子逻辑增强对固态,混合双Quity传感器的宏观合奏的灵敏度。我们实现了30倍的信噪比,转化为超过数量级的灵敏度增强。使用钻石中的氮空位(NV)中心的电子旋转作为传感器,我们利用NV中心的现场氮核自旋作为记忆孔,结合了均匀的偏置和控制场,确保所有$ {\ sim} 10^9 $ tixqubit station senv env env env env env inv env inv env inv senv and senv senv env均可允许NV。我们使用合成AC磁场发现了具有不同最佳传感间隔的多个测量协议的量子逻辑灵敏度增强,包括XY8动态解耦和相关光谱。结果独立于目标信号的性质,并且使用NV中心和其他固态合奏广泛适用于计量。这项工作为使用量子逻辑或量子误差校正算法的量子传感器的宏观集合提供了基准,以增强灵敏度。
We demonstrate quantum logic enhanced sensitivity for a macroscopic ensemble of solid-state, hybrid two-qubit sensors. We achieve a factor of 30 improvement in signal-to-noise ratio, translating to a sensitivity enhancement exceeding an order of magnitude. Using the electronic spins of nitrogen vacancy (NV) centers in diamond as sensors, we leverage the on-site nitrogen nuclear spins of the NV centers as memory qubits, in combination with homogeneous bias and control fields, ensuring that all of the ${\sim}10^9$ two-qubit sensors are sufficiently identical to permit global control of the NV ensemble spin states. We find quantum logic sensitivity enhancement for multiple measurement protocols with varying optimal sensing intervals, including XY8 dynamical decoupling and correlation spectroscopy, using a synthetic AC magnetic field. The results are independent of the nature of the target signal and broadly applicable to metrology using NV centers and other solid-state ensembles. This work provides a benchmark for macroscopic ensembles of quantum sensors that employ quantum logic or quantum error correction algorithms for enhanced sensitivity.