论文标题

通用信息提取的统一结构生成

Unified Structure Generation for Universal Information Extraction

论文作者

Lu, Yaojie, Liu, Qing, Dai, Dai, Xiao, Xinyan, Lin, Hongyu, Han, Xianpei, Sun, Le, Wu, Hua

论文摘要

信息提取受到其不同目标,异质结构和需求特定模式的影响。在本文中,我们提出了一个统一的文本到结构生成框架,即UIE,它可以普遍地模拟不同的任务,自适应地生成目标结构,并协作从不同的知识来源学习一般的IE IE。具体而言,UIE通过结构化的提取语言统一地编码不同的提取结构,通过基于模式的及时机制(结构性架构讲师)自适应地生成目标提取,并通过大规模的预培养的预培训的文本对结构模型捕获共同的IE能力。实验表明,UIE在4个IE任务,13个数据集以及所有监督,低资源和几乎没有弹药的设置上实现了最新的性能,用于广泛的实体,关系,事件,事件和情感提取任务及其统一。这些结果验证了UIE的有效性,普遍性和可传递性。

Information extraction suffers from its varying targets, heterogeneous structures, and demand-specific schemas. In this paper, we propose a unified text-to-structure generation framework, namely UIE, which can universally model different IE tasks, adaptively generate targeted structures, and collaboratively learn general IE abilities from different knowledge sources. Specifically, UIE uniformly encodes different extraction structures via a structured extraction language, adaptively generates target extractions via a schema-based prompt mechanism - structural schema instructor, and captures the common IE abilities via a large-scale pre-trained text-to-structure model. Experiments show that UIE achieved the state-of-the-art performance on 4 IE tasks, 13 datasets, and on all supervised, low-resource, and few-shot settings for a wide range of entity, relation, event and sentiment extraction tasks and their unification. These results verified the effectiveness, universality, and transferability of UIE.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源