论文标题
原子:巨大恒星形成区域的ALMA三毫米观测 - X. G9.62+0.19中的大量核心之间的化学分化
ATOMS: ALMA Three-millimeter Observations of Massive Star-forming regions -- X. Chemical differentiation among the massive cores in G9.62+0.19
论文作者
论文摘要
研究大规模恒星形成区域的物理和化学结构对于理解大型恒星的形成和早期演变至关重要。我们对六个致密核心进行了详细的调查,称为MM1,MM4,MM6,MM7,MM8和MM11,在G9.62+0.19 Star形成区域中,在Alma Band 3观测值中解析了恒星形成区域。在这些核心方面,已经确定了约172种过渡,并归因于16种,包括有机氧,氮,含硫分子及其同位素学。四个密集的核心MM7,MM8,MM4和MM11是线丰富的来源。这些光谱线的建模揭示了旋转温度的72 $ - $ 115〜K,100 $ - $ 163〜K,102 $ - $ 204〜K,和84 $ - $ 123〜K,MM7,MM8,MM4和MM11分别为123〜K。分子列密度为1.6 $ \ times $ 10 $^{15} $ $ - $ 9.2 $ \ times $ 10 $^{17} $ 〜cm $^{ - 2} $ to to tout四个内核。核MM8和MM4显示含氧和含氮物种之间的化学差异,即MM4富含含氧分子,而含氮分子尤其是振动激发的HC $ _ {3} $ n线,主要在MM8中观察到。积聚阶段的不同初始温度可能导致这种N/O分化。通过分析O-bearing复合有机分子(COMS)的柱密度和空间分布,我们发现C $ _ {2} $ h $ _ {5} $ oh和Ch $ _ {3} $ _ {3} $ och $ _ {3} $可能具有常见的先前,ch $ _ $ _ {3} $ OH。 ch $ _ {3} $ ocho和ch $ _ {3} $ och $ _ {3} $可能是化学链接的。此外,HC $ _ {3} $ n和hc $ _ {5} $ n排放的观察到的变化可能表明它们在热和冷区域的不同编队机制。
Investigating the physical and chemical structures of massive star-forming regions is critical for understanding the formation and the early evolution of massive stars. We performed a detailed line survey toward six dense cores named as MM1, MM4, MM6, MM7, MM8, and MM11 in G9.62+0.19 star-forming region resolved in ALMA band 3 observations. Toward these cores, about 172 transitions have been identified and attributed to 16 species including organic Oxygen-, Nitrogen-, Sulfur-bearing molecules and their isotopologues. Four dense cores MM7, MM8, MM4, and MM11 are line rich sources. Modeling of these spectral lines reveals the rotational temperature in a range of 72$-$115~K, 100$-$163~K, 102$-$204~K, and 84$-$123~K for the MM7, MM8, MM4, and MM11, respectively. The molecular column densities are 1.6 $\times$ 10$^{15}$ $-$ 9.2 $\times$ 10$^{17}$~cm$^{-2}$ toward the four cores. The cores MM8 and MM4 show chemical difference between Oxygen- and Nitrogen-bearing species, i.e., MM4 is rich in oxygen-bearing molecules while nitrogen-bearing molecules especially vibrationally excited HC$_{3}$N lines are mainly observed in MM8. The distinct initial temperature at accretion phase may lead to this N/O differentiation. Through analyzing column densities and spatial distributions of O-bearing Complex Organic Molecules (COMs), we found that C$_{2}$H$_{5}$OH and CH$_{3}$OCH$_{3}$ might have a common precursor, CH$_{3}$OH. CH$_{3}$OCHO and CH$_{3}$OCH$_{3}$ are likely chemically linked. In addition, the observed variation in HC$_{3}$N and HC$_{5}$N emission may indicate that their different formation mechanism at hot and cold regions.