论文标题

双变量分销回归,并应用于保险数据

Bivariate Distribution Regression with Application to Insurance Data

论文作者

Wang, Yunyun, Oka, Tatsushi, Zhu, Dan

论文摘要

理解可变依赖性,特别是在给定一组协变量的情况下引起其统计特性,为实际操作管理中的数学基础提供了数学基础,例如风险分析和决定的情况。本文提出了一种基于分布回归和分解方法来建模双变量结果的有条件关节分布的估计方法。该方法被认为是半参数,因为它允许在协变量的边际和关节分布的柔性建模,而无需在整个分布中施加全局参数假设。与现有的参数方法相反,我们的方法可以容纳离散,连续或混合变量,并提供了一种简单而有效的方法来捕获双变量结果和协变量之间的分布依赖性结构。各种模拟结果证实,与替代方法相比,我们的方法在有限样本中的性能类似或更好。在对运动第三方责任保险投资组合的研究中,该方法有效地估计了风险措施,例如风险和预期的短缺。该结果表明,这种半参数方法可以作为保险风险管理的替代方法。

Understanding variable dependence, particularly eliciting their statistical properties given a set of covariates, provides the mathematical foundation in practical operations management such as risk analysis and decision-making given observed circumstances. This article presents an estimation method for modeling the conditional joint distribution of bivariate outcomes based on the distribution regression and factorization methods. This method is considered semiparametric in that it allows for flexible modeling of both the marginal and joint distributions conditional on covariates without imposing global parametric assumptions across the entire distribution. In contrast to existing parametric approaches, our method can accommodate discrete, continuous, or mixed variables, and provides a simple yet effective way to capture distributional dependence structures between bivariate outcomes and covariates. Various simulation results confirm that our method can perform similarly or better in finite samples compared to the alternative methods. In an application to the study of a motor third-party liability insurance portfolio, the proposed method effectively estimates risk measures such as the conditional Value-at-Risk and Expected Shortfall. This result suggests that this semiparametric approach can serve as an alternative in insurance risk management.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源