论文标题

支持开发人员解决移动应用程序中以人为本问题

Supporting Developers in Addressing Human-centric Issues in Mobile Apps

论文作者

Khalajzadeh, Hourieh, Shahin, Mojtaba, Obie, Humphrey O., Agrawal, Pragya, Grundy, John

论文摘要

未能考虑移动应用程序开发过程中不同最终用户的特征,局限性和能力可能会导致最终用户的问题,例如可访问性和可用性问题。我们将这类问题称为以人为本的问题。尽管它们的重要性,但对最终用户遇到的以人为中心问题的类型的理解有限,并由移动应用程序的开发人员考虑到。在本文中,我们通过Google App Store评论来研究哪些以人为中心的最终用户报告,这些问题是以人为中心的问题为主题,是Github上开发人员讨论的话题,以及最终用户和开发人员是否讨论相同的以人为中心的问题。然后,我们研究自动化工具是否可能有助于检测以人为中心的问题,以及开发人员是否会发现这种工具有用。为此,我们通过提取和手动分析了1,200个应用程序评论的随机样本和1,200期评论,从Google App Store和Github上存在的12个不​​同项目中进行了一项评论,我们进行了一项实证研究。我们的分析导致了以人为中心的问题的分类法,将以人为中心的问题分为三个高的级别:应用程序使用,包容性和用户反应。然后,我们开发了机器学习和深度学习模型,这些模型可以自动从应用程序评论和开发人员讨论中自动识别和分类为中心的问题。对移动应用程序开发人员的调查显示,以人为中心的问题自动检测具有实际应用。在我们的发现的指导下,我们重点介绍了一些含义和未来的工作,以进一步理解并纳入移动应用程序开发中以人为中心的问题。

Failure to consider the characteristics, limitations, and abilities of diverse end-users during mobile apps development may lead to problems for end-users such as accessibility and usability issues. We refer to this class of problems as human-centric issues. Despite their importance, there is a limited understanding of the types of human-centric issues that are encountered by end-users and taken into account by the developers of mobile apps. In this paper, we examine what human-centric issues end-users report through Google App Store reviews, which human-centric issues are a topic of discussion for developers on GitHub, and whether end-users and developers discuss the same human-centric issues. We then investigate whether an automated tool might help detect such human-centric issues and whether developers would find such a tool useful. To do this, we conducted an empirical study by extracting and manually analysing a random sample of 1,200 app reviews and 1,200 issue comments from 12 diverse projects that exist on both Google App Store and GitHub. Our analysis led to a taxonomy of human-centric issues that categorises human-centric issues into three-high levels: App Usage, Inclusiveness, and User Reaction. We then developed machine learning and deep learning models that are promising in automatically identifying and classifying human-centric issues from app reviews and developer discussions. A survey of mobile app developers shows that the automated detection of human-centric issues has practical applications. Guided by our findings, we highlight some implications and possible future work to further understand and incorporate human-centric issues in mobile apps development.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源