论文标题

4D的Hyper-Dilaton Weyl多重组

Hyper-Dilaton Weyl Multiplet of 4D, ${\mathcal{N}}=2$ Conformal Supergravity

论文作者

Gold, Gregory, Khandelwal, Saurish, Kitchin, William, Tartaglino-Mazzucchelli, Gabriele

论文摘要

我们定义了$ {\ Mathcal {n}}} = 2 $ suppromal Supergravity的新的Dilaton Weyl多重组在四个维度上。这是通过重新诠释壳体超数的运动方程式来构建的,作为渲染标准Weyl多重组合材料的某些字段的约束。独立的玻感组件包括四个标量场和两种规格的三重态。由此产生的,所谓的Hyper-Dilaton Weyl多重点定义了本地$ {\ Mathcal {n}} = 2 $ superconformentongra的$ 24+24 $ off-shell表示。通过将Hyper-Dilaton Weyl多重耦合到脱壳矢量多重补偿器,我们获得了两个最小$ 32+32 $ 32 $ 32 $ off-shell多重$ {\ Mathcal {n}} = 2 $POINCARéSuperRdravity,Muller在1986年构建了Muller in 1986。 PoincaréSupergravity多重组与超人的多人量表一起起着Dilaton的作用,而其其他三个标量则与两种形式的真实量规三联体偶。有趣的是,$ bf $耦合在没有标准测量的情况下引起了Dilaton的标量潜力。

We define a new dilaton Weyl multiplet of ${\mathcal{N}}=2$ conformal supergravity in four dimensions. This is constructed by reinterpreting the equations of motion of an on-shell hypermultiplet as constraints that render some of the fields of the standard Weyl multiplet composite. The independent bosonic components include four scalar fields and a triplet of gauge two-forms. The resulting, so-called, hyper-dilaton Weyl multiplet defines a $24+24$ off-shell representation of the local ${\mathcal{N}}=2$ superconformal algebra. By coupling the hyper-dilaton Weyl multiplet to an off-shell vector multiplet compensator, we obtain one of the two minimal $32+32$ off-shell multiplets of ${\mathcal{N}}=2$ Poincaré supergravity constructed by Müller in 1986. On-shell, this contains the minimal ${\mathcal{N}}=2$ Poincaré supergravity multiplet together with a hypermultiplet where one of its physical scalars plays the role of a dilaton, while its three other scalars are dualised to a triplet of real gauge two-forms. Interestingly, a $BF$-coupling induces a scalar potential for the dilaton without a standard gauging.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源