论文标题

$ \ mathbb {s}^n $在捏合条件下的规定分数$ q $ -curvatures问题的新存在结果

New existence results for prescribed fractional $Q$-curvatures problem on $\mathbb{S}^n$ under pinching conditions

论文作者

Tang, Zhongwei, Zhou, Ning

论文摘要

在本文中,我们研究了规定的分数$ q $ - curvatures订单的问题$ n $ - 二维标准球$(\ mathbb {s}^{n},g_0)$,$ n \ geq3 $,$ n \ geq3 $,$ n \ geq3 $,$ n \ freac in(0,\ frac freac n n-n-2} $ {2})通过将无限方法的临界点与莫尔斯理论相结合,我们在适当的捏合条件下获得了新的存在结果。

In this paper we study the prescribed fractional $Q$-curvatures problem of order $2 σ$ on the $n$-dimensional standard sphere $(\mathbb{S}^{n}, g_0)$, where $n\geq3$, $σ\in(0,\frac{n-2}{2})$. By combining critical points at infinity approach with Morse theory we obtain new existence results under suitable pinching conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源