论文标题
$ \ mathbb {s}^n $在捏合条件下的规定分数$ q $ -curvatures问题的新存在结果
New existence results for prescribed fractional $Q$-curvatures problem on $\mathbb{S}^n$ under pinching conditions
论文作者
论文摘要
在本文中,我们研究了规定的分数$ q $ - curvatures订单的问题$ n $ - 二维标准球$(\ mathbb {s}^{n},g_0)$,$ n \ geq3 $,$ n \ geq3 $,$ n \ geq3 $,$ n \ freac in(0,\ frac freac n n-n-2} $ {2})通过将无限方法的临界点与莫尔斯理论相结合,我们在适当的捏合条件下获得了新的存在结果。
In this paper we study the prescribed fractional $Q$-curvatures problem of order $2 σ$ on the $n$-dimensional standard sphere $(\mathbb{S}^{n}, g_0)$, where $n\geq3$, $σ\in(0,\frac{n-2}{2})$. By combining critical points at infinity approach with Morse theory we obtain new existence results under suitable pinching conditions.