论文标题

戈斯:迈向广义开放式语义细分

GOSS: Towards Generalized Open-set Semantic Segmentation

论文作者

Hong, Jie, Li, Weihao, Han, Junlin, Zheng, Jiyang, Fang, Pengfei, Harandi, Mehrtash, Petersson, Lars

论文摘要

在本文中,我们介绍并研究了一项新的图像分割任务,称为广义开放式语义分割(GOSS)。以前,使用众所周知的开放式语义分割(OSS),智能代理只能检测到未知区域而无需进一步处理,从而限制了他们对环境的看法。有理由认为对检测到的未知像素的进一步分析将是有益的。因此,我们提出了Goss,它以整体方式统一了两个定义明确的分割任务OSS和通用分段(GS)的能力。具体而言,Goss将像素分类为属于已知类别,而未知类别的像素的簇(或组)被标记为这样。为了评估这一新扩展的任务,我们进一步提出了一个平衡像素分类和聚类方面的度量。此外,我们在现有数据集的基础上构建了基准测试,并提出了一个简单的神经体系结构作为基线,该基线共同预测开放式设置设置下的像素分类和聚类。我们对多个基准测试的实验证明了基线的有效性。我们认为,我们的新戈斯任务可以为未来的研究产生表现力的图像理解。代码将提供。

In this paper, we present and study a new image segmentation task, called Generalized Open-set Semantic Segmentation (GOSS). Previously, with the well-known open-set semantic segmentation (OSS), the intelligent agent only detects the unknown regions without further processing, limiting their perception of the environment. It stands to reason that a further analysis of the detected unknown pixels would be beneficial. Therefore, we propose GOSS, which unifies the abilities of two well-defined segmentation tasks, OSS and generic segmentation (GS), in a holistic way. Specifically, GOSS classifies pixels as belonging to known classes, and clusters (or groups) of pixels of unknown class are labelled as such. To evaluate this new expanded task, we further propose a metric which balances the pixel classification and clustering aspects. Moreover, we build benchmark tests on top of existing datasets and propose a simple neural architecture as a baseline, which jointly predicts pixel classification and clustering under open-set settings. Our experiments on multiple benchmarks demonstrate the effectiveness of our baseline. We believe our new GOSS task can produce an expressive image understanding for future research. Code will be made available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源