论文标题
纠缠熵,单粒子职业概率和短程相关性
Entanglement entropy, single-particle occupation probabilities, and short-range correlations
论文作者
论文摘要
对于具有短距离相关性(SRC)的量子多体系统,其幅度之间的亲密关系,在动量上比Fermi动量大于Fermi动量的单粒子占用概率的行为以及纠缠熵是未研究和利用的一个新的定性方面。大量的近期冷凝问题研究表明,纠缠熵的时间演变描述了分离和强烈相互作用的多体系统的非平衡动力学,其方式类似于Boltzmann熵,该熵的定义严格定义用于稀释和弱相互作用的多体系统。在核和冷原子气体中的理论和实验研究都表明,由于存在SRC的存在,Fermion动量分布在MONMA的一般行为$ N(K)= C/K^4 $大于Fermi动量,由于SRC的存在,大约20 \%的粒子比Fermi Momentam大的粒子大。在SRC的存在下,长时间的尾巴的存在改变了单粒子动能和职业概率之间的教科书关系,$ n_ \ text {mf}(k)= {1}/\ {1+ \ {1+\expβ[ε(k) - μ] - μ] \} $ ton Momenta非常不同地形成了Fermi Mange,特别是Fermi Mange,特别是动态的过程。 SRC诱导了单粒子占用概率的高弹药尾部增加了费米子系统的纠缠熵,这反过来影响了许多核反应的动力学,例如重离子碰撞和核裂变。
For quantum many-body systems with short-range correlations (SRCs), the intimate relationship between their magnitude, the behavior of the single-particle occupation probabilities at momenta larger than the Fermi momentum, and the entanglement entropy is a new qualitative aspect not studied and exploited yet. A large body of recent condensed matter studies indicate that the time evolution of the entanglement entropy describes the non-equilibrium dynamics of isolated and strongly interacting many-body systems, in a manner similar to the Boltzmann entropy, which is strictly defined for dilute and weakly interacting many-body systems. Both theoretical and experimental studies in nuclei and cold atomic gases have shown that the fermion momentum distribution has a generic behavior $n(k)=C/k^4$ at momenta larger than the Fermi momentum, due to the presence of SRCs, with approximately 20\% of the particles having momenta larger than the Fermi momentum. The presence of the long momentum tails in the presence of SRCs changes the textbook relation between the single-particle kinetic energy and occupation probabilities, $n_\text{mf}(k) = {1}/\{ 1+\expβ[ε(k)-μ]\}$ for momenta very different form the Fermi momentum, particularly for dynamics processes. SRCs induced high-momentum tails of the single-particle occupation probabilities increase the entanglement entropy of fermionic systems, which in its turn affects the dynamics of many nuclear reactions, such as heavy-ion collisions and nuclear fission.