论文标题

子集总和$ O(n^{11} \ log(n))$

Subset Sum in $O(n^{11}\log(n))$

论文作者

Tolchin, Rion

论文摘要

本文描述了一种算法(迄今为止称为“蜻蜓算法”),可以在$ O(n^{11} \ log(n))$时复杂性中解决子集问题。本文将首先详细介绍广义的“产品衍生”方法(以及该方法的更有效的版本,该方法将在算法中使用),通过该方法,可以使用一对一元多项式来生成一个独特的一频性多项式系统,该系统将与该系统中的每种多项式都可以与其他奇异的植物相等,以与原始的奇异相互互动,以均匀的相对均配对。然后,该方法将应用于一对多项式上,其中一种$ ϕ(x)$是根据子集问题的实例展示已知的根,另一个$ t(x)$,其中包含未知的占位符系数,代表$ ϕ(x)$的线性子集的未知子集。

This paper describes an algorithm (thus far referred to as the "Dragonfly Algorithm") by which the subset-sum problem can be solved in $O(n^{11}\log(n))$ time complexity. The paper will first detail the generalized "product-derivative" method (and the more efficient version of this method which will be used in the algorithm) by which a pair of monic polynomials can be used to generate a system of unique monic polynomials for which each polynomial in the system will share with every other a set of roots equivalent to the intersection of the roots of the original pair; this method will then be applied on a pair of polynomials one of which, $ϕ(x)$, exhibiting known roots based on the instance of the subset-sum problem and the other of which, $t(x)$, containing unknown placeholder coefficients and representing an unknown subset of the linear factors of $ϕ(x)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源