论文标题

精神分裂症的诊断:全面评估

Diagnosis of Schizophrenia: A comprehensive evaluation

论文作者

Tanveer, M., Jangir, Jatin, Ganaie, M. A., Beheshti, Iman, Tabish, M., Chhabra, Nikunj

论文摘要

机器学习模型已成功地用于诊断精神分裂症疾病。尚未评估分类模型和特征选择技术对精神分裂症诊断的影响。在这里,我们试图在结构磁共振成像数据上访问分类模型的性能以及不同的特征选择方法。数据由72名精神分裂症和74名健康对照受试者组成。我们根据支持向量机(SVM),随机森林,内核脊回归和随机神经网络评估了不同的分类算法。此外,我们评估了t检验,接收器操作员特征(ROC),Wilcoxon,Entropy,Bhattacharyya,最小冗余最大相关性(MRMR)和邻居组件分析(NCA)作为特征选择技术。基于评估,与其他分类模型相比,具有高斯内核的基于高斯内核的模型和Wilcoxon特征选择成为最佳特征选择方法。此外,就数据模式而言,与单独的灰质和白质的性能相比,灰质和白质的整合性能得到了更好的证明。我们的评估表明,分类算法以及特征选择方法会影响精神分裂症疾病的诊断。这表明正确选择特征和分类模型可以改善精神分裂症的诊断。

Machine learning models have been successfully employed in the diagnosis of Schizophrenia disease. The impact of classification models and the feature selection techniques on the diagnosis of Schizophrenia have not been evaluated. Here, we sought to access the performance of classification models along with different feature selection approaches on the structural magnetic resonance imaging data. The data consist of 72 subjects with Schizophrenia and 74 healthy control subjects. We evaluated different classification algorithms based on support vector machine (SVM), random forest, kernel ridge regression and randomized neural networks. Moreover, we evaluated T-Test, Receiver Operator Characteristics (ROC), Wilcoxon, entropy, Bhattacharyya, Minimum Redundancy Maximum Relevance (MRMR) and Neighbourhood Component Analysis (NCA) as the feature selection techniques. Based on the evaluation, SVM based models with Gaussian kernel proved better compared to other classification models and Wilcoxon feature selection emerged as the best feature selection approach. Moreover, in terms of data modality the performance on integration of the grey matter and white matter proved better compared to the performance on the grey and white matter individually. Our evaluation showed that classification algorithms along with the feature selection approaches impact the diagnosis of Schizophrenia disease. This indicates that proper selection of the features and the classification models can improve the diagnosis of Schizophrenia.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源