论文标题
毕达哥拉斯手段和差分从属的应用
Application of Pythagorean means and Differential Subordination
论文作者
论文摘要
对于$ 0 \leqα\ leq 1,$ let $h_α(x,y)$是$ x $ and y。$ x $ and y。$ $。 H_α(p(z),p(z)θ(z)+zp'(z)φ(z))\ prec h(z)\ rightArrow p(z)\ prec h(z),\ end \ end {qore {qore*},其中$φ,\+θ$是分析功能,$ h $是一种不合时宜的属性。此外,我们证明了差异从属含义,涉及三种经典手段的组合。作为应用程序,我们概括了许多现有结果,并获得了足够的条件,以实现明显的和单位的关系。
For $0\leqα\leq 1,$ let $H_α(x,y)$ be the convex weighted harmonic mean of $x$ and $y.$ We establish differential subordination implications of the form \begin{equation*} H_α(p(z),p(z)Θ(z)+zp'(z)Φ(z))\prec h(z)\Rightarrow p(z)\prec h(z), \end{equation*} where $Φ,\;Θ$ are analytic functions and $h$ is a univalent function satisfying some special properties. Further, we prove differential subordination implications involving a combination of three classical means. As an application, we generalize many existing results and obtain sufficient conditions for starlikeness and univalence.