论文标题

近似贝叶斯计算中的模型比较

Model Comparison in Approximate Bayesian Computation

论文作者

Boelts, Jan

论文摘要

自然科学中的一个常见问题是根据观察到的数据比较竞争模型。贝叶斯模型比较根据每个模型为数据提供的证据提供了该比较的统计上合理框架。但是,该框架依赖于计算似然函数,这对于实践中使用的大多数模型都很棘手。先前在近似贝叶斯计算(ABC)领域的方法规定了基于拒绝抽样的可能性的评估,并估算了模型证据,但它们通常在计算上是强度的。在这里,我提出了一种在ABC中进行贝叶斯模型比较的新有效方法。基于后部密度估计的最新进展,该方法以参数形式近似于模型的后验。特别是,我将混合密度网络训练以将观察到的数据的特征映射到模型的后验概率。通过两个示例评估表演。在可拖动的模型比较问题上,准确地预测了基本的确切后验概率。在计算神经科学的用例场景中 - 两个离子通道模型之间的比较 - 基础基础真相模型可靠地分配了很高的后验概率。总体而言,该方法提供了一种新的有效方法,可以对复杂的生物物理模型进行贝叶斯模型比较,而与模型结构无关。

A common problem in natural sciences is the comparison of competing models in the light of observed data. Bayesian model comparison provides a statistically sound framework for this comparison based on the evidence each model provides for the data. However, this framework relies on the calculation of likelihood functions which are intractable for most models used in practice. Previous approaches in the field of Approximate Bayesian Computation (ABC) circumvent the evaluation of the likelihood and estimate the model evidence based on rejection sampling, but they are typically computationally intense. Here, I propose a new efficient method to perform Bayesian model comparison in ABC. Based on recent advances in posterior density estimation, the method approximates the posterior over models in parametric form. In particular, I train a mixture-density network to map features of the observed data to the posterior probability of the models. The performance is assessed with two examples. On a tractable model comparison problem, the underlying exact posterior probabilities are predicted accurately. In a use-case scenario from computational neuroscience -- the comparison between two ion channel models -- the underlying ground-truth model is reliably assigned a high posterior probability. Overall, the method provides a new efficient way to perform Bayesian model comparison on complex biophysical models independent of the model architecture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源