论文标题

从共同相关器到分析s-矩阵:CFT $ _1 $/qft $ _2 $

From conformal correlators to analytic S-matrices: CFT$_1$/QFT$_2$

论文作者

Córdova, Lucía, He, Yifei, Paulos, Miguel F.

论文摘要

我们研究了一维CFT的家庭,与描述ADS中的QFT $ _2 $相关。使用Polyakov引导程序作为我们的主要工具,我们解释了S型如何从CFT相关器的平坦空间极限中出现。在此限制中,我们证明CFT OPE密度与广义自由场的密度匹配,这意味着S-Matrix的单位性。我们为S-Matrix建立了CFT分散公式,该公式证明了其分析性,除了我们在CFT数据方面表征的真实轴上的奇异性。特别是OPE的积极性确定任何此类S-Matrix都必须满足扩展的单位条件。我们还仔细地证明,对于物理运动学,S-Matrix可以通过相移公式更直接地描述。我们的结果至关重要地取决于操作员频谱中一定差距的假设。我们引导扰动广告气泡,三角形和盒子图,发现S矩阵中异常阈值的存在由违反此假设产生的无界操作精确地发出。最后,我们阐明了单位性饱和S型和极端CFT之间的关系,在双S-Matrix和CFT引导程序之间建立映射,并讨论我们的结果如何帮助理解特定S-矩阵的紫外线完整性或缺乏紫外线的完整性。

We study families of one-dimensional CFTs relevant for describing gapped QFTs in AdS$_2$. Using the Polyakov bootstrap as our main tool, we explain how S-matrices emerge from the flat space limit of CFT correlators. In this limit we prove that the CFT OPE density matches that of a generalized free field, and that this implies unitarity of the S-matrix. We establish a CFT dispersion formula for the S-matrix, proving its analyticity except for singularities on the real axis which we characterize in terms of the CFT data. In particular positivity of the OPE establishes that any such S-matrix must satisfy extended unitarity conditions. We also carefully prove that for physical kinematics the S-matrix may be more directly described by a phase shift formula. Our results crucially depend on the assumption of a certain gap in the spectrum of operators. We bootstrap perturbative AdS bubble, triangle and box diagrams and find that the presence of anomalous thresholds in S-matrices are precisely signaled by an unbounded OPE arising from violating this assumption. Finally we clarify the relation between unitarity saturating S-matrices and extremal CFTs, establish a mapping between the dual S-matrix and CFT bootstraps, and discuss how our results help understand UV completeness or lack thereof for specific S-matrices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源