论文标题

输血:与变压器的医疗图像分割的多视图发散融合

TransFusion: Multi-view Divergent Fusion for Medical Image Segmentation with Transformers

论文作者

Liu, Di, Gao, Yunhe, Zhangli, Qilong, Han, Ligong, He, Xiaoxiao, Xia, Zhaoyang, Wen, Song, Chang, Qi, Yan, Zhennan, Zhou, Mu, Metaxas, Dimitris

论文摘要

将来自多视图图像的信息结合在一起对于提高自动化方法的疾病诊断方法的性能和鲁棒性至关重要。但是,由于多视图图像的非对齐特性,跨视图的建立相关性和数据融合在很大程度上仍然是一个开放的问题。在这项研究中,我们提出了输血,这是一种基于变压器的结构,可使用卷积层和强大的注意机制合并多发多视觉成像信息。特别是,针对丰富的跨视图上下文建模和语义依赖性挖掘,提出了发散的融合注意(DIFA)模块,以解决从不同图像视图中捕获未对齐数据之间的长距离相关性的关键问题。我们进一步提出了多尺度关注(MSA),以收集多尺度特征表示的全局对应关系。我们评估了心脏MRI(M \&MS-2)挑战赛的多疾病,多视图\&多中心右心室分段的输血。输血表明了针对最先进方法的领先绩效,并为多视图成像集成的新观点打开了稳健的医学图像分割。

Combining information from multi-view images is crucial to improve the performance and robustness of automated methods for disease diagnosis. However, due to the non-alignment characteristics of multi-view images, building correlation and data fusion across views largely remain an open problem. In this study, we present TransFusion, a Transformer-based architecture to merge divergent multi-view imaging information using convolutional layers and powerful attention mechanisms. In particular, the Divergent Fusion Attention (DiFA) module is proposed for rich cross-view context modeling and semantic dependency mining, addressing the critical issue of capturing long-range correlations between unaligned data from different image views. We further propose the Multi-Scale Attention (MSA) to collect global correspondence of multi-scale feature representations. We evaluate TransFusion on the Multi-Disease, Multi-View \& Multi-Center Right Ventricular Segmentation in Cardiac MRI (M\&Ms-2) challenge cohort. TransFusion demonstrates leading performance against the state-of-the-art methods and opens up new perspectives for multi-view imaging integration towards robust medical image segmentation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源