论文标题

使用可区分参数优化的神经物理动态载荷建模

Neuro-physical dynamic load modeling using differentiable parametric optimization

论文作者

Abhyankar, Shrirang, Drgona, Jan, August, Andrew, Skomski, Elliot, Tuor, Aaron

论文摘要

在这项工作中,我们研究了一种数据驱动的方法,该方法用于获得分布系统的减少等效负载模型,用于机电瞬态稳定性分析。提出的减少等效物是一种神经物理模型,该模型包括传统的拉链载荷模型,该模型通过神经网络增强。这种神经物理模型通过可区分的编程进行培训。我们讨论了设置为差异参数程序的提出模型的公式,建模细节和培训。该神经物理拉链负载模型的性能和准确性在中等规模的350-BUS传输 - 分布网络上呈现。

In this work, we investigate a data-driven approach for obtaining a reduced equivalent load model of distribution systems for electromechanical transient stability analysis. The proposed reduced equivalent is a neuro-physical model comprising of a traditional ZIP load model augmented with a neural network. This neuro-physical model is trained through differentiable programming. We discuss the formulation, modeling details, and training of the proposed model set up as a differential parametric program. The performance and accuracy of this neurophysical ZIP load model is presented on a medium-scale 350-bus transmission-distribution network.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源