论文标题
通过神经可行性检查加速综合任务和运动计划
Accelerating Integrated Task and Motion Planning with Neural Feasibility Checking
论文作者
论文摘要
随着机器人在工业中发挥越来越重要的作用,他们对日常生活任务的应用的期望正在越来越高。机器人需要执行由需要完成的几个子任务组成的长马任务。任务和运动计划(TAMP)提供了一个分层框架,通过交织一个符号任务计划器来处理操作任务的顺序性质,该任务计划器会产生可能的动作序列,并使用一个运动计划器来检查几何学世界中的运动学可行性,并在几个约束中产生机器人轨迹,例如,从一个确定的状态下,可以从一个状态下进行climision-freem collision-freige collision-freem collision froce froce from collision froce tose and contrime to andose and contricie of andose and One Indections and One Indient to nongore tosey tosey tosey tosey。因此,关于任务计划的几何接地的推理由运动计划者接管。但是,运动计划在计算上是强度的,并且是可用性,因为可行性检查器铸造tamp方法不适用于现实世界情景。在本文中,我们介绍了神经可行性分类器(NFC),这是一种简单而有效的视觉启发式,用于对tamp中提出的动作的可行性进行分类。也就是说,NFC将在不需要昂贵的运动计划的情况下确定任务计划者的不可行的行动,从而减少多步操作任务的计划时间。 NFC通过卷积神经网络(CNN)将机器人工作区的图像编码为功能图。我们使用tamp问题中的模拟数据训练NFC,并根据IK可行性检查标记实例。我们在不同的模拟操纵任务中的经验结果表明,我们的NFC概括为整个机器人工作区,即使在具有多个障碍的场景中,也具有很高的预测准确性。当与最先进的集成型号结合使用时,我们的NFC可以在减少计划时间的同时提高其性能。
As robots play an increasingly important role in the industrial, the expectations about their applications for everyday living tasks are getting higher. Robots need to perform long-horizon tasks that consist of several sub-tasks that need to be accomplished. Task and Motion Planning (TAMP) provides a hierarchical framework to handle the sequential nature of manipulation tasks by interleaving a symbolic task planner that generates a possible action sequence, with a motion planner that checks the kinematic feasibility in the geometric world, generating robot trajectories if several constraints are satisfied, e.g., a collision-free trajectory from one state to another. Hence, the reasoning about the task plan's geometric grounding is taken over by the motion planner. However, motion planning is computationally intense and is usability as feasibility checker casts TAMP methods inapplicable to real-world scenarios. In this paper, we introduce neural feasibility classifier (NFC), a simple yet effective visual heuristic for classifying the feasibility of proposed actions in TAMP. Namely, NFC will identify infeasible actions of the task planner without the need for costly motion planning, hence reducing planning time in multi-step manipulation tasks. NFC encodes the image of the robot's workspace into a feature map thanks to convolutional neural network (CNN). We train NFC using simulated data from TAMP problems and label the instances based on IK feasibility checking. Our empirical results in different simulated manipulation tasks show that our NFC generalizes to the entire robot workspace and has high prediction accuracy even in scenes with multiple obstructions. When combined with state-of-the-art integrated TAMP, our NFC enhances its performance while reducing its planning time.