论文标题

改善了本杰明·巴诺 - 马动任何方程的分析半径的下限

Improved lower bounds of analytic radius for the Benjamin-Bona-Mahony equation

论文作者

Wang, Ming

论文摘要

本文使用分析初始数据,致力于在真实线上BBM方程解决方案的空间分析。结果表明,分析半径具有下限,例如$ t^{ - \ frac {2} {3}} $,因为$ t $ to to to to Infinity,这是对先前结果的改进。主要的新成分是分析空间中的高阶几乎保护法。通过引入平滑符号的等效分析规范并建立高阶多项式的一些代数身份来证明这一点。

This paper is devoted to the spatial analyticity of the solution of the BBM equation on the real line with an analytic initial data. It is shown that the analytic radius has a lower bound like $t^{-\frac{2}{3}}$ as time $t$ goes to infinity, which is an improvement of previous results. The main new ingredient is a higher order almost conservation law in analytic spaces. This is proved by introducing an equivalent analytic norm with smooth symbol and establishing some algebra identities of higher order polynomials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源