论文标题

通过切割和粘合孔的0形式,1形和2组对称性

0-Form, 1-Form and 2-Group Symmetries via Cutting and Gluing of Orbifolds

论文作者

Cvetič, Mirjam, Heckman, Jonathan J., Hübner, Max, Torres, Ethan

论文摘要

M理论的Orbifold奇异性构成了广泛的超对称量子场理论(SQFTS)的基础。在本文中,我们展示了这些几何形状的局部数据如何决定这些系统的较高对称性的全局数据。特别是,通过切割和胶合的过程,我们展示了局部的Orbifold奇异性如何编码所得SQFTS的0形式,1形和2组对称性。从几何上讲,这是从延伸到非紧密几何形状边界的可能的奇异性中获得的。边界条件的结果类别然后捕获了这些对称性,并由边界几何形状的Orbifold同源性等效地指定。我们在许多示例的背景下说明了这些一般要点,包括通过Orbifold奇异性设计的5D超符合字段理论,通过奇异的椭圆形纤维纤维的Calabi-yau三折设计的5D量规理论,以及通过非典型$ G_2 $ g_2 $ space设计的4D SQCCD型理论。

Orbifold singularities of M-theory constitute the building blocks of a broad class of supersymmetric quantum field theories (SQFTs). In this paper we show how the local data of these geometries determines global data on the resulting higher symmetries of these systems. In particular, via a process of cutting and gluing, we show how local orbifold singularities encode the 0-form, 1-form and 2-group symmetries of the resulting SQFTs. Geometrically, this is obtained from the possible singularities which extend to the boundary of the non-compact geometry. The resulting category of boundary conditions then captures these symmetries, and is equivalently specified by the orbifold homology of the boundary geometry. We illustrate these general points in the context of a number of examples, including 5D superconformal field theories engineered via orbifold singularities, 5D gauge theories engineered via singular elliptically fibered Calabi-Yau threefolds, as well as 4D SQCD-like theories engineered via M-theory on non-compact $G_2$ spaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源