论文标题

黑盒对抗性攻击语音识别的神经预测因子

Neural Predictor for Black-Box Adversarial Attacks on Speech Recognition

论文作者

Biolková, Marie, Nguyen, Bac

论文摘要

最近的作品揭示了自动语音识别(ASR)模型对对抗性示例(AES)的脆弱性,即在音频信号转录中导致错误的小扰动。因此,研究音频对抗攻击是朝着强大的ASR迈出的第一步。尽管在攻击音频示例中取得了重大进展,但黑框攻击仍然具有挑战性,因为只提供了转录的硬标签信息。由于此有限的信息,现有的黑框方法通常需要大量的查询来攻击单个音频示例。在本文中,我们引入了NP-Attack,这是一种基于神经预测变量的方法,该方法逐渐将搜索发展为小小的对抗性扰动。给定扰动方向,我们的神经预测因子直接估计导致转录的最小扰动。特别是,它使NP攻击能够通过基于梯度的优化准确地学习有希望的扰动方向。实验结果表明,NP攻击可以通过其他最先进的黑盒对抗性攻击实现竞争成果,同时需要少量查询。 NP攻击的代码可在线获得。

Recent works have revealed the vulnerability of automatic speech recognition (ASR) models to adversarial examples (AEs), i.e., small perturbations that cause an error in the transcription of the audio signal. Studying audio adversarial attacks is therefore the first step towards robust ASR. Despite the significant progress made in attacking audio examples, the black-box attack remains challenging because only the hard-label information of transcriptions is provided. Due to this limited information, existing black-box methods often require an excessive number of queries to attack a single audio example. In this paper, we introduce NP-Attack, a neural predictor-based method, which progressively evolves the search towards a small adversarial perturbation. Given a perturbation direction, our neural predictor directly estimates the smallest perturbation that causes a mistranscription. In particular, it enables NP-Attack to accurately learn promising perturbation directions via gradient-based optimization. Experimental results show that NP-Attack achieves competitive results with other state-of-the-art black-box adversarial attacks while requiring a significantly smaller number of queries. The code of NP-Attack is available online.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源