论文标题

在存在低级噪声的情况下,登式学习的学习

Dencentralized learning in the presence of low-rank noise

论文作者

Nassif, Roula, Bordignon, Virginia, Vlaski, Stefan, Sayed, Ali H.

论文摘要

由于观察噪声或干扰,由代理在网络中收集的观察结果可能不可靠。本文提出了一种分布式算法,该算法允许每个节点通过仅依靠局部计算和与直接邻居的互动来提高其自身观察的可靠性,假设网络监控的字段(图信号)在低维子空间中,并且在低率的子空间中,并且在低阶的噪声中存在低率噪声,则在通常的全范围全范围的噪声中也存在低级噪声。虽然倾斜的投影可用于将测量值沿斜向子空间的方向投影到低率子空间上,但所得的解决方案未分布。从集中式解决方案开始,我们提出了一种算法,该算法以迭代和分布式方式对整体观测值进行倾斜投影。然后,我们展示如何扩展倾斜投影框架以处理网络上的分布式学习和适应问题。

Observations collected by agents in a network may be unreliable due to observation noise or interference. This paper proposes a distributed algorithm that allows each node to improve the reliability of its own observation by relying solely on local computations and interactions with immediate neighbors, assuming that the field (graph signal) monitored by the network lies in a low-dimensional subspace and that a low-rank noise is present in addition to the usual full-rank noise. While oblique projections can be used to project measurements onto a low-rank subspace along a direction that is oblique to the subspace, the resulting solution is not distributed. Starting from the centralized solution, we propose an algorithm that performs the oblique projection of the overall set of observations onto the signal subspace in an iterative and distributed manner. We then show how the oblique projection framework can be extended to handle distributed learning and adaptation problems over networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源